
HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Hardware Modeling [VU] (191.011)
– WS24 –

Advanced Testbenches

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-08, 00:15 (b25118c)

Hardware Modeling [VU] (191.011)
– WS24 –

Advanced Testbenches

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Advanced Testbenches

In this lecture we will discuss how testbenches more powerful and with better scalability than the ones we considered so far
can be written. In particular, we will look into file I/O, how random values can be generated and the standard environment
package.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Motivation

More powerful testbenches?

Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!

File I/O
Randomized testing
Frameworks and packages

covered in other courses

1

Motivation

More powerful testbenches?

Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!

File I/O
Randomized testing
Frameworks and packages

covered in other courses

Advanced Testbenches
Motivation

Motivation

Let us start by addressing the elephant in the room. At this point in the course you have already successfully written
testbenches and verified that your designs are correct. So why should you care about advanced testbenches? Is there a
need for more powerful testing?

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!

File I/O
Randomized testing
Frameworks and packages

covered in other courses

1

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!

File I/O
Randomized testing
Frameworks and packages

covered in other courses

Advanced Testbenches
Motivation

Motivation

Well, basically there is a plethora of reasons why more powerful testbenches are required. Scalability is one obvious problem
of the testbenches you have written so far. While they work for many of the rather small examples you deal with during
this course, they won’t work for complex designs containing hundreds of I/O pins, concurrently handling different interfaces
and transmission protocols. Manually applying stimuli on the level of abstraction you did so far is simply not feasible and
too error-prone for big designs. With the complexity rising in lockstep with the continuing shrinking of features sizes, this
is only becoming worse. As a result, the verification of hardware designs is very demanding and expensive. To give you
some vague concept of costs involved, the per-transistor verification costs of a modern chip are higher than the design costs.
Therefore, enabling verification engineers and designers to efficiently verify big and complex designs is vital. But how can
this be achieved?

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!

File I/O
Randomized testing
Frameworks and packages

covered in other courses

1

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!

File I/O
Randomized testing
Frameworks and packages

covered in other courses

Advanced Testbenches
Motivation

Motivation

Well, ultimately, this is where the more powerful testbenches come into play, that are automated and act on higher levels of
abstraction. In this lecture we will introduce language support for some first steps in that direction.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!
File I/O

Randomized testing
Frameworks and packages

covered in other courses

1

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!
File I/O

Randomized testing
Frameworks and packages

covered in other courses

Advanced Testbenches
Motivation

Motivation

We will start by looking into file handling in VHDL, enabling us to generate inputs for our designs using external tools, and to
provide the results of a simulation for postprocessing.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!
File I/O
Randomized testing

Frameworks and packages

covered in other courses

1

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!
File I/O
Randomized testing

Frameworks and packages

covered in other courses

Advanced Testbenches
Motivation

Motivation

We will then continue with discussing how random values can be generated in our testbenches, allowing us to apply random
test inputs.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!
File I/O
Randomized testing
Frameworks and packages

covered in other courses

1

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!
File I/O
Randomized testing
Frameworks and packages

covered in other courses

Advanced Testbenches
Motivation

Motivation

Finally, there also exist powerful frameworks and useful packages for VHDL simulations.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!
File I/O
Randomized testing
Frameworks and packages

covered in other courses

1

Motivation

More powerful testbenches?
Modern designs can be highly complex (e.g., hundreds of I/O pins)
Manually generating and applying stimuli infeasible / impossible
The per-transistor cost of testing is higher than that of designing

More powerful testbenches and automation!
File I/O
Randomized testing
Frameworks and packages

covered in other courses

Advanced Testbenches
Motivation

Motivation

However, for an introduction to such frameworks be referred to other courses. In this lecture we will only briefly introduce one
particular VHDL package that can come in handy in testbenches.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Access Types 69

Recall access and file types

Objects can be created dynamically during simulation
Using so-called allocators

No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

2

Access Types 69

Recall access and file types

Objects can be created dynamically during simulation
Using so-called allocators

No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

Advanced Testbenches
File I/O

Access Types

Let us begin by discussing how file I/O works in VHDL. However, before we do that, we need to properly introduce two VHDL
types we mentioned but neglected so far. In particular, we will now consider access and file types, beginning with the former.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators

No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

2

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators

No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

Advanced Testbenches
File I/O

Access Types

One feature of VHDL we did not mention so far is the possibility to dynamically create objects during simulations. This can
be done using so-called allocators, which allocate the required memory and an object of the respective type. We will see an
example soon.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

2

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

Advanced Testbenches
File I/O

Access Types

However, naturally objects that are created dynamically cannot be assigned static identifiers that refer to them. Instead, the
allocators return a so-called ”access value”.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

2

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

Advanced Testbenches
File I/O

Access Types

These access values are of distinct types, so-called access types. As the name suggests, access types provide access to
objects of a certain type. The syntax for declaring such an access type is straightforward and shown on the slide. TYPE_NAME
is the name of the declared access type. The DESIGNATED_TYPE defines the type of objects the access type grants access
to.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable

Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

2

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable

Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

Advanced Testbenches
File I/O

Access Types

Note that objects of an access type must only be of the class variable. Thus, it is not possible to have a signal of such a
type.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;

Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

2

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;

Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

Advanced Testbenches
File I/O

Access Types

An object of an access type is initially assigned the value null, which means it is not designating any object at all. As
mentioned earlier, access values, which actually designate an object, can be assigned to it using an allocator, as shown on
the slide. The allocator is the combination of the keyword ”new” and a type name, as shown on the slide via the example of
an access type for integer. Note that the allocated object is initialized with the default value of the respective type.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

2

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

Advanced Testbenches
File I/O

Access Types

In order to access the value of the object referred to by an access type variable, the all keyword must be used. The slide
shows this for both writing and reading.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator
2

Access Types 69

Recall access and file types
Objects can be created dynamically during simulation

Using so-called allocators
No identifier referring to them

Access types provide access to objects of certain type

type TYPE_NAME is access DESIGNATED_TYPE;

Can only be used for variable
Default value null; assigned using allocators
int_ptr := new integer;
Access to value of designated type object via all
int_ptr.all := 42; print(to_string(int_ptr.all));

Similar to object references in Java and the new operator

Advanced Testbenches
File I/O

Access Types

If access types and allocators appear a bit strange initially, you can draw a comparison to Java’s references to objects created
via the new operator.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Types 71

File types define objects representing files on the host system

type FILETYPE is file of TYPE_MARK;

Value of file type object is sequence of values in file
TYPE_MARK

Defines types of values in file
(unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

Implicitly defined subprograms for each file type ft of tm

3

File Types 71

File types define objects representing files on the host system

type FILETYPE is file of TYPE_MARK;

Value of file type object is sequence of values in file
TYPE_MARK

Defines types of values in file
(unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

Implicitly defined subprograms for each file type ft of tm

Advanced Testbenches
File I/O

File Types

Let us now discuss a rather exotic feature of VHDL, namely file types and the file class. If you think about it, having a
dedicated handling of files via the type system, instead of using existing types, is something rather rare. This is a remnant of
VHDL originally being a language for specifying hardware rather than a programming language. The purpose of objects of
the file class is representing files on the host system where the simulation runs. File types are used to declare the kind of
file. The slide shows the syntax for declaring such a type.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Types 71

File types define objects representing files on the host system

type FILETYPE is file of TYPE_MARK;

Value of file type object is sequence of values in file

TYPE_MARK
Defines types of values in file
(unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

Implicitly defined subprograms for each file type ft of tm

3

File Types 71

File types define objects representing files on the host system

type FILETYPE is file of TYPE_MARK;

Value of file type object is sequence of values in file

TYPE_MARK
Defines types of values in file
(unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

Implicitly defined subprograms for each file type ft of tm

Advanced Testbenches
File I/O

File Types

The value of a file object is the sequence of values contained in the file on the host system in the same order as they occur
in the file.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Types 71

File types define objects representing files on the host system

type FILETYPE is file of TYPE_MARK;

Value of file type object is sequence of values in file
TYPE_MARK

Defines types of values in file
(unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

Implicitly defined subprograms for each file type ft of tm

3

File Types 71

File types define objects representing files on the host system

type FILETYPE is file of TYPE_MARK;

Value of file type object is sequence of values in file
TYPE_MARK

Defines types of values in file
(unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

Implicitly defined subprograms for each file type ft of tm

Advanced Testbenches
File I/O

File Types

The type of the values in the file is defined by TYPE_MARK in the file type declaration. It can be a scalar type, even uncon-
strained, an unconstrained one-dimensional array of a constrained subtype or a record type of fully constrained elements.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Types 71

File types define objects representing files on the host system

type FILETYPE is file of TYPE_MARK;

Value of file type object is sequence of values in file
TYPE_MARK

Defines types of values in file
(unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

Implicitly defined subprograms for each file type ft of tm

3

File Types 71

File types define objects representing files on the host system

type FILETYPE is file of TYPE_MARK;

Value of file type object is sequence of values in file
TYPE_MARK

Defines types of values in file
(unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

Implicitly defined subprograms for each file type ft of tm

Advanced Testbenches
File I/O

File Types

For each file type a set of subprograms for handling respective files is implicitly defined. We will discuss them next, referring
to the respective file type as ft and the type mark as tm.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

Advanced Testbenches
File I/O

File Operations

On this slide you can see all the implicitly defined subprograms for a file type. We will now briefly discuss each of them, for
more details we refer you to the standard.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

opens file on host

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

opens file on host

Advanced Testbenches
File I/O

File Operations

The first subprogram we consider is the file_open procedure. As the name suggests, it can be used to open a file on the
host system via a file type variable. The subprogram takes four parameters, with the first being optional due to an available
overload.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

indicates result, optional

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

indicates result, optional

Advanced Testbenches
File I/O

File Operations

The first is status, which is assigned a value of an enumeration type that indicates the result of the file open operation. You
can find the particular values in the standard.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

associated to open file

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

associated to open file

Advanced Testbenches
File I/O

File Operations

The parameter f of the file type and the class file will be associated with the opened file.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

name of the host file

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

name of the host file

Advanced Testbenches
File I/O

File Operations

external_name is the path to the file to be opened on the host system.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

READ_MODE, WRITE_MODE
APPEND_MODE

2019: READ_WRITE_MODE

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

READ_MODE, WRITE_MODE
APPEND_MODE

2019: READ_WRITE_MODE

Advanced Testbenches
File I/O

File Operations

Finally, the open_kind parameter defines the opening mode. Possible values are READ_MODE, WRITE_MODE and
APPEND_MODE, as well as a mode for both, reading and writing, since VHDL 2019.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

closes opened file

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

closes opened file

Advanced Testbenches
File I/O

File Operations

The file_close procedure is pretty self-explanatory, as it simply closes the given file. In general, most simulators will flush
and close opened files at the end of the simulation. However, it is still highly recommended to manually close a file for several
reasons. First, the standard does not require simulators to close opened files. Second, if the simulation terminates abruptly,
for example due to a crash, you risk losing buffered but not yet written data. Furthermore, closing files that are no longer
needed is more resource efficient and also mitigates mistakenly opening a still opened file again.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

reads next value

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

reads next value

Advanced Testbenches
File I/O

File Operations

The procedure called read also does exactly what its name suggests. That is, it returns the next element of the sequence of
values contained in the file via the value parameter.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

appends value

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

appends value

Advanced Testbenches
File I/O

File Operations

Likewise, the write procedure appends the passed value to the given file.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

ensures buffered writes
are actually carried out

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

ensures buffered writes
are actually carried out

Advanced Testbenches
File I/O

File Operations

A call to the flush procedure leads to all values previously appended to the file via the write procedure to be actually
written to the file. It ensures that the effects of previous writes are not just held in a buffer but also actually committed to the
file system.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

returns true if read
can read another value

4

File Operations

 procedure file_open (
 status: out file_open_status;
 file f: ft;
 external_name: in string;
 open_kind: in file_open_kind := READ_MODE);

 procedure file_close (file f: ft);

 procedure read (file f: ft; value: out tm);

 procedure write (file f: ft; value: in tm);

 procedure flush (file f: ft);

 function endfile (file f: ft) return boolean;

returns true if read
can read another value

Advanced Testbenches
File I/O

File Operations

Finally, the endfile function can be used to determine if further values can be read from a file. It returns false for files in
read-only mode if a call to the read procedure is able to read another value. For files in write-only mode it always returns
true.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files

Revolves around two new types
type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files

Revolves around two new types
type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

As being restricted to reading and writing single values can be a bit cumbersome, the TextIO package provides type and
subprogram declarations that allow formatted operation on text files.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

The package essentially revolves around two types called line and text. Their declarations are shown on the slide.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

The purpose of the access type line is to provide a dynamically resizable buffer for strings. We will see this in use later.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

The other type, text, is a file type with string as type mark.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

We want to stress that the TextIO package is solely for text-based files. Hence, it is not possible to read or write binary data
using it. This becomes clear if we observe that both types are based on strings.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

The package further declares subprograms to read from and write to line buffers.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

The read procedure reads the line currently held by the given line buffer and provides the result via the value variable.
Note that the procedure only reads the characters from the line until either the end of the line is reached, the amount of read
characters surpasses the length of the value variable, or an invalid character is encountered. You can find details on this in
the standard.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

The so-called good parameter is optional and returns true if the read operation succeeded.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

The write procedure can be used to append formatted text to a line buffer

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

using the optional justified and field parameters.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

The field parameter can be used to specify a desired field width for the appended string. If the desired field is shorter than
the string, the length of the string is instead taken as field width. Therefore, the default value 0 has the effect of the field being
exactly as long as the string.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

Using the justified parameter one can then either right or left align the string within this field.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

Furthermore, the readline and writeline procedures read a line from a file into a buffer, respectively append the content
of a buffer to a file as a new line.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

5

Text IO Package 306

Types and subprograms for formatted operations on text files
Revolves around two new types

type line is access string; -- dynamically resizable buffer

type text is file of string; -- text-file type

Subprograms for formatted manipulation of line buffers
procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;

justified: in side:=right; field: in width:=0);

Subprograms for reading/writing line buffers to file
procedure readline(file f: text; l: inout line);
procedure writeline(file f: text; l: inout line);

Further procedures [BINARY|OCTAL|HEX]_[READ|WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

Advanced Testbenches
File I/O

Text IO Package

Finally, we want to mention that the TextIO package provides further functionality in the form of procedures for reading and
writing values of the type bit_vector in binary, octal or hexadecimal format. These subprograms can prove quite handy,
as overloads for them are defined in various packages such as std_logic_1164 or numeric_std.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

6

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

Advanced Testbenches
File I/O

Read from file

Let us now have a look at an example where we want to read bytes given in hexadecimal format from a file into a
std_ulogic_vector variable. The file and its content are shown on the slide.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

6

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

Advanced Testbenches
File I/O

Read from file

The first thing we do is including the TextIO package.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

6

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

Advanced Testbenches
File I/O

Read from file

Next, we see something we have not mentioned before. Namely, we open the desired file in read mode directly at the
declaration of a file instead of opening it later using the procedure previously mentioned.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

6

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

Advanced Testbenches
File I/O

Read from file

We then create a variable of type line, acting as a buffer for the read values and one target variable for the read operation.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

6

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

Advanced Testbenches
File I/O

Read from file

Finally, we read the file line by line until the end of the file is reached, where reading happens by using the previously
introduced subprograms. The respective calls first read a line from the file into a buffer variable and then convert it from
hexadecimal and assign the result to the target variable.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

6

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

Advanced Testbenches
File I/O

Read from file

Lastly, the opened file is closed.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

6

Read from file

 [...]
 use std.textio.all;
 [...]
 begin
 main: process is
 file f : text open READ_MODE is "data.txt";
 variable l : line;
 variable x : std_ulogic_vector(7 downto 0);
 begin

 while not endfile(f) loop
 readline(f, l);
 hex_read(l, x);
 report to_string(x);
 end loop;
 file_close(f);
 wait;
 end process;

 00
 11
 AA

[...]: 00000000
[...]: 00010001
[...]: 10101010

Advanced Testbenches
File I/O

Read from file

Simulating this code results in the output shown on the right, where all three values contained in the file are reported.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure; 7

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure;

Advanced Testbenches
File I/O

Example: VHDLDraw show

We will now conclude the part about file operations by considering an example for writing to a file. In particular, we are looking
at the show procedure of vhdldraw that creates a text-based image file.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure; 7

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure;

Advanced Testbenches
File I/O

Example: VHDLDraw show

Just as in the previous example we start by declaring an object of the class file and type text, and a variable of type
line. However, this time we are not opening the target file directly at the file declaration.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure; 7

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure;

Advanced Testbenches
File I/O

Example: VHDLDraw show

Instead, this is done in the procedure’s statement body, using the file_open procedure. Note that we open the file in write
mode.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure; 7

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure;

Advanced Testbenches
File I/O

Example: VHDLDraw show

The next thing the procedure does, is to write the special file header required by the particular image format we use. This is
done first by writing to the line buffer and then appending it to the file.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure; 7

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure;

Advanced Testbenches
File I/O

Example: VHDLDraw show

Next, the red, green and blue color components of each pixel are written to the file.

HWMod
WS24

Adv. TB
Motivation

File I/O

Access Types

File Types

TextIO

Examples

Random Testing

std.env

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure; 7

Example: VHDLDraw show

 procedure show(filename : string) is
 file f_img : text;
 variable img_line : line;
 [...] -- variables for color (r,g,b), width and height
 begin
 file_open(f_img, filename, WRITE_MODE);
 swrite(img_line, "P3"); -- "string_write", c.f. standard
 writeline(f_img, img_line);
 [...] -- further writes for the image header

 for y in 0 to height-1 loop
 for x in 0 to width-1 loop
 c := frame(y, x);
 [...] -- set color variables r, g, b
 if x /= 0 then
 swrite(img_line, " ");
 end if;
 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
 end loop;
 writeline(f_img, img_line);
 end loop;
 file_close(f_img);
 end procedure;

Advanced Testbenches
File I/O

Example: VHDLDraw show

After all pixels were written to the file, the procedure finishes by closing the file.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Exhaustive testing infeasible (exponential in state and input space)

Directed Testing
Apply predefined stimuli
Requires solid knowledge of UUT
Only finds “anticipated” bugs

Complementary technique: Random testing
Apply random stimuli to UUT
Finds non-anticipated bugs

Usually constrained

Exhaustive

Bug

Test Space

Directed RandomConstrained random

8

Exhaustive testing infeasible (exponential in state and input space)

Directed Testing
Apply predefined stimuli
Requires solid knowledge of UUT
Only finds “anticipated” bugs

Complementary technique: Random testing
Apply random stimuli to UUT
Finds non-anticipated bugs

Usually constrained

Exhaustive

Bug

Test Space

Directed RandomConstrained random

Advanced Testbenches
Random Testing

Let us now talk about the support for random testing in VHDL. But first, we will address the question of why random testing is
even required. In general, you are likely familiar with the problems involved in properly testing software. As these problems
are inherent to verification though, they are also relevant for verifying hardware. In principle, we would of course like to
exhaustively test our designs. That is, we want to ensure that for each possible input and system state the correct output
is produced. This is illustrated by the image on the slide, which shows the overall test space, as a circle that contains all
combinations of states and inputs that can occur during the proper operation of the design. For some of these combinations
our design might behave erroneously, which is represented by the red dot. All tested combinations are shaded blue. Thus,
we can clearly observe that exhaustive testing will find all bugs contained in a design. However, due to the testing effort
growing exponentially in the state and input space, this quickly becomes infeasible even for simple systems.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Exhaustive testing infeasible (exponential in state and input space)
Directed Testing

Apply predefined stimuli
Requires solid knowledge of UUT
Only finds “anticipated” bugs

Complementary technique: Random testing
Apply random stimuli to UUT
Finds non-anticipated bugs

Usually constrained

Exhaustive

Bug

Test Space

Directed RandomConstrained random

8

Exhaustive testing infeasible (exponential in state and input space)
Directed Testing

Apply predefined stimuli
Requires solid knowledge of UUT
Only finds “anticipated” bugs

Complementary technique: Random testing
Apply random stimuli to UUT
Finds non-anticipated bugs

Usually constrained

Exhaustive

Bug

Test Space

Directed RandomConstrained random

Advanced Testbenches
Random Testing

An alternative is directed testing, where predefined stimuli are applied to the unit-under-test. This is only effective when
detailed knowledge about the design and the specific scenarios to target is available, often resulting in the designers writing
the tests themselves. However, this comes with an inherent limitation, as only bugs that are already anticipated can be found.
In particular, designers are often aware of problematic parts of their designs and target these to find respective problems.
Errors resulting from a designer misinterpreting the specification cannot be found using this method, as the designer will
never create a test case that triggers this behavior. Furthermore, directed testing usually only covers a small part of the test
space.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Exhaustive testing infeasible (exponential in state and input space)
Directed Testing

Apply predefined stimuli
Requires solid knowledge of UUT
Only finds “anticipated” bugs

Complementary technique: Random testing
Apply random stimuli to UUT
Finds non-anticipated bugs

Usually constrained

Exhaustive

Bug

Test Space

Directed RandomConstrained random

8

Exhaustive testing infeasible (exponential in state and input space)
Directed Testing

Apply predefined stimuli
Requires solid knowledge of UUT
Only finds “anticipated” bugs

Complementary technique: Random testing
Apply random stimuli to UUT
Finds non-anticipated bugs

Usually constrained

Exhaustive

Bug

Test Space

Directed RandomConstrained random

Advanced Testbenches
Random Testing

This is where random testing, as a complementary technique to directed testing, comes in handy. This testing approach
involves applying randomly generated stimuli to the UUT. A key advantage of this is that bugs that are not expected by the
designer can be uncovered. However, just blindly applying random stimuli is usually not of much use, as the overall test
space might not be covered very well, or inputs that cannot even occur during the operation of the design are applied.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Exhaustive testing infeasible (exponential in state and input space)
Directed Testing

Apply predefined stimuli
Requires solid knowledge of UUT
Only finds “anticipated” bugs

Complementary technique: Random testing
Apply random stimuli to UUT
Finds non-anticipated bugs
Usually constrained

Exhaustive

Bug

Test Space

Directed RandomConstrained random

8

Exhaustive testing infeasible (exponential in state and input space)
Directed Testing

Apply predefined stimuli
Requires solid knowledge of UUT
Only finds “anticipated” bugs

Complementary technique: Random testing
Apply random stimuli to UUT
Finds non-anticipated bugs
Usually constrained

Exhaustive

Bug

Test Space

Directed RandomConstrained random

Advanced Testbenches
Random Testing

Therefore, we typically bound the randomly generated inputs by specific constraints, ensuring that only meaningful and
relevant random data is applied. This can achieve a better coverage of the test space and a higher testing efficiency. Let us
continue by discussing how VHDL facilitates random testing.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL 561

uniform procedure of math_real package
 procedure uniform(variable seed1, seed2: inout positive;
 variable x : out real);

Generates real in 0.0 < x < 1.0

Seeds allow repetition of generated sequence
Manual conversion to other types / ranges required

9

Random Testing in VHDL 561

uniform procedure of math_real package
 procedure uniform(variable seed1, seed2: inout positive;
 variable x : out real);

Generates real in 0.0 < x < 1.0

Seeds allow repetition of generated sequence
Manual conversion to other types / ranges required

Advanced Testbenches
Random Testing

Random Testing in VHDL

In VHDL, random testing can be implemented using the uniform procedure provided in the math real package. This
procedure takes two seed values and generates a pseudo-random real number in the interval of 0 and 1, excluding the
interval border values.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL 561

uniform procedure of math_real package
 procedure uniform(variable seed1, seed2: inout positive;
 variable x : out real);

Generates real in 0.0 < x < 1.0

Seeds allow repetition of generated sequence

Manual conversion to other types / ranges required

9

Random Testing in VHDL 561

uniform procedure of math_real package
 procedure uniform(variable seed1, seed2: inout positive;
 variable x : out real);

Generates real in 0.0 < x < 1.0

Seeds allow repetition of generated sequence

Manual conversion to other types / ranges required

Advanced Testbenches
Random Testing

Random Testing in VHDL

Internally, this procedure implements a particular pseudo-random-number-generator that mimics a uniform distribution of
generated values. Using the two seeds, the generated sequence is controllable. This is not only paramount for reproducing
test cases, but also allows easily changing the sequence of generated stimuli. Note that the procedure modifies the passed
seed variables and that you should not manually change them after the first call to uniform.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL 561

uniform procedure of math_real package
 procedure uniform(variable seed1, seed2: inout positive;
 variable x : out real);

Generates real in 0.0 < x < 1.0

Seeds allow repetition of generated sequence
Manual conversion to other types / ranges required

9

Random Testing in VHDL 561

uniform procedure of math_real package
 procedure uniform(variable seed1, seed2: inout positive;
 variable x : out real);

Generates real in 0.0 < x < 1.0

Seeds allow repetition of generated sequence
Manual conversion to other types / ranges required

Advanced Testbenches
Random Testing

Random Testing in VHDL

Note that uniform is the only built-in way to generate random values in VHDL. Therefore, we manually have to adapt the
random floating point numbers for specific use cases, such as other types and ranges. We will now look at two examples.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin

 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

10

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin

 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

Advanced Testbenches
Random Testing

Random Testing in VHDL (cont’d)

The first example we consider is an impure function that pseudo-randomly generates a std_ulogic value of zero or one.
The subprogram signature, as well as its declarative section, are shown on the slide. Inside this section, we declare a variable
for the result of the random number generation. In addition to that, we require two seed variables to be visible within the scope
of the procedure and that are initialized to some arbitrary value. Note that we cannot simply declare the seed variables in the
function’s declarative section as well, as they must keep their values between calls of the function.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);

 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

10

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);

 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

Advanced Testbenches
Random Testing

Random Testing in VHDL (cont’d)

Next, we use uniform to generate a pseudo-random real value, which will be contained in the variable rand.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is

 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

10

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is

 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

Advanced Testbenches
Random Testing

Random Testing in VHDL (cont’d)

Based on this variable we can then either return a zero or a one. Next, let us look at how a random integer inside a certain
interval can be generated based on uniform.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is

 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

10

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is

 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

Advanced Testbenches
Random Testing

Random Testing in VHDL (cont’d)

The respective subprogram takes two integer values, start and stop, which define the interval of the generated integer.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);

 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

10

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);

 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

Advanced Testbenches
Random Testing

Random Testing in VHDL (cont’d)

We start by generating a random real number just as in the previous example.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

10

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

Advanced Testbenches
Random Testing

Random Testing in VHDL (cont’d)

We then scale this random number by the size of the interval plus one, offset it by the lower interval bound and subtract 0.5
before converting it to an integer.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

10

Random Testing in VHDL (cont’d)

Generation of random std_ulogic value
 impure function rand_sul return std_ulogic is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 if rand < 0.5 then
 return ’0’;
 end if;
 return ’1’;
 end function;

Generation of integer range
 impure function rand_int(start, stop : integer) return integer is
 variable rand : real;
 begin
 uniform(seed1, seed2, rand);
 return integer(rand * real(stop-start+1)+real(start)-0.5);
 end function;

Advanced Testbenches
Random Testing

Random Testing in VHDL (cont’d)

The plus one and minus 0.5, highlighted in red, are necessary to give the border values the same probability as the other
values inside the interval. This works because VHDL rounds to the nearest integer when converting a real to an integer.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Standard Environment Package 312

VHDL-2008 defines env for interfacing between VHDL and host

stop and finish procedures for simulation termination
procedure stop;

Can be used in main process to stop whole simulation

 std.env.stop; use std.env.all;
 [...]
 stop;

Further functionality only introduced in VHDL-2019
Types and functions for getting and formatting real-world timestamps
File system manipulations (e.g., create and delete directories)
Simulation meta info (VHDL and tool version, tool name, name of file, etc.)

11

Standard Environment Package 312

VHDL-2008 defines env for interfacing between VHDL and host

stop and finish procedures for simulation termination
procedure stop;

Can be used in main process to stop whole simulation

 std.env.stop; use std.env.all;
 [...]
 stop;

Further functionality only introduced in VHDL-2019
Types and functions for getting and formatting real-world timestamps
File system manipulations (e.g., create and delete directories)
Simulation meta info (VHDL and tool version, tool name, name of file, etc.)

Advanced Testbenches
std.env

Standard Environment Package

Finally, we briefly want to introduce the std.env package that is present since VHDL-2008. The purpose of this package is
to provide an interface between VHDL and the simulation host.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Standard Environment Package 312

VHDL-2008 defines env for interfacing between VHDL and host

stop and finish procedures for simulation termination
procedure stop;

Can be used in main process to stop whole simulation

 std.env.stop; use std.env.all;
 [...]
 stop;

Further functionality only introduced in VHDL-2019
Types and functions for getting and formatting real-world timestamps
File system manipulations (e.g., create and delete directories)
Simulation meta info (VHDL and tool version, tool name, name of file, etc.)

11

Standard Environment Package 312

VHDL-2008 defines env for interfacing between VHDL and host

stop and finish procedures for simulation termination
procedure stop;

Can be used in main process to stop whole simulation

 std.env.stop; use std.env.all;
 [...]
 stop;

Further functionality only introduced in VHDL-2019
Types and functions for getting and formatting real-world timestamps
File system manipulations (e.g., create and delete directories)
Simulation meta info (VHDL and tool version, tool name, name of file, etc.)

Advanced Testbenches
std.env

Standard Environment Package

In the original version, supported by the tools, the package essentially consists of the two procedures stop and finish.
Both procedures can be used to terminate a simulation. According to the standard, the difference is that finish does not
allow the simulation to be continued after the procedure call, whereas stop only pauses the simulation, thus allowing it to
be resumed. However, we have not seen the tools we use react differently to the two calls and will hence only use stop in
this course. In a nutshell, as long as some process eventually calls the subprogram, your simulation terminates regardless
of whether all signals are stable and all processes contain a wait statement. The slide shows the declaration of stop.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Standard Environment Package 312

VHDL-2008 defines env for interfacing between VHDL and host

stop and finish procedures for simulation termination
procedure stop;

Can be used in main process to stop whole simulation

 std.env.stop; use std.env.all;
 [...]
 stop;

Further functionality only introduced in VHDL-2019
Types and functions for getting and formatting real-world timestamps
File system manipulations (e.g., create and delete directories)
Simulation meta info (VHDL and tool version, tool name, name of file, etc.)

11

Standard Environment Package 312

VHDL-2008 defines env for interfacing between VHDL and host

stop and finish procedures for simulation termination
procedure stop;

Can be used in main process to stop whole simulation

 std.env.stop; use std.env.all;
 [...]
 stop;

Further functionality only introduced in VHDL-2019
Types and functions for getting and formatting real-world timestamps
File system manipulations (e.g., create and delete directories)
Simulation meta info (VHDL and tool version, tool name, name of file, etc.)

Advanced Testbenches
std.env

Standard Environment Package

To use the subprogram of the std.env package, you can either directly call it using std.env.stop, shown in the left code
snippet, or by adding a use statement for the std.env package and then calling the subprogram using only its identifier.
This is shown in the right code snippet.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Standard Environment Package 312

VHDL-2008 defines env for interfacing between VHDL and host

stop and finish procedures for simulation termination
procedure stop;

Can be used in main process to stop whole simulation

 std.env.stop; use std.env.all;
 [...]
 stop;

Further functionality only introduced in VHDL-2019
Types and functions for getting and formatting real-world timestamps
File system manipulations (e.g., create and delete directories)
Simulation meta info (VHDL and tool version, tool name, name of file, etc.)

11

Standard Environment Package 312

VHDL-2008 defines env for interfacing between VHDL and host

stop and finish procedures for simulation termination
procedure stop;

Can be used in main process to stop whole simulation

 std.env.stop; use std.env.all;
 [...]
 stop;

Further functionality only introduced in VHDL-2019
Types and functions for getting and formatting real-world timestamps
File system manipulations (e.g., create and delete directories)
Simulation meta info (VHDL and tool version, tool name, name of file, etc.)

Advanced Testbenches
std.env

Standard Environment Package

Finally, we want to give an outlook into the functionality provided by the 2019 version of the std.env package, which will likely
be supported by tools in the future. In this version of VHDL, the package was significantly extended in order to provide useful
types and functions for logging, like a datetime type and functions that get real-world timestamps from the host. Furthermore,
the newest version of the package allows testbenches to manipulate the host file system, such as creating or deleting
directories. In addition to that, there are also subprograms defined that allow to get meta information about simulations, like
the VHDL and tool version, the name of the current file and more. While these are particularly noteworthy changes, the
package comes with further functionality we did not mention here. As always, you can find details in the standard.

HWMod
WS24

Adv. TB
Motivation

File I/O

Random Testing

std.env

Lecture Complete!

Modified: 2025-03-08, 00:15 (b25118c)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	Advanced Testbenches
	Motivation
	File I/O
	Random Testing
	std.env

