HWMod
WS25

predlis Hardware Modeling [VU] (191.011)

- WS25 -

Advanced Testbenches

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)

Motivation

HWMod
WS25

m More powerful testbenches?

Motivation

Motivation

HWMod
WS25

m More powerful testbenches?

Motivation

Motivation

HWMod
WS25

m More powerful testbenches?
m Modern designs can be highly complex (e.g., hundreds of 1/O pins)

Motivation

Motivation

HWMod
WS25

m More powerful testbenches?

m Modern designs can be highly complex (e.g., hundreds of 1/O pins)
m Manually generating and applying stimuli infeasible / impossible

Motivation

Motivation

HWMod
WS25

m More powerful testbenches?
m Modern designs can be highly complex (e.g., hundreds of 1/O pins)
m Manually generating and applying stimuli infeasible / impossible
m The per-transistor cost of testing is higher than that of designing

Motivation

Motivation

HWMod
WS25

m More powerful testbenches?
m Modern designs can be highly complex (e.g., hundreds of 1/O pins)
m Manually generating and applying stimuli infeasible / impossible
m The per-transistor cost of testing is higher than that of designing

Motivation

m More powerful testbenches and automation!

Motivation

HWMod
WS25

m More powerful testbenches?
m Modern designs can be highly complex (e.g., hundreds of 1/O pins)
m Manually generating and applying stimuli infeasible / impossible
m The per-transistor cost of testing is higher than that of designing

Motivation

m More powerful testbenches and automation!
m File I/O

Motivation

HWMod
WS25

m More powerful testbenches?
m Modern designs can be highly complex (e.g., hundreds of 1/O pins)
m Manually generating and applying stimuli infeasible / impossible
m The per-transistor cost of testing is higher than that of designing

Motivation

m More powerful testbenches and automation!

m File I/O
m Randomized testing

Motivation

HWMod
WS25

m More powerful testbenches?
m Modern designs can be highly complex (e.g., hundreds of 1/O pins)
m Manually generating and applying stimuli infeasible / impossible
m The per-transistor cost of testing is higher than that of designing

Motivation

m More powerful testbenches and automation!
m File I/O
m Randomized testing
m Frameworks and packages

Motivation

HWMod
WS25

m More powerful testbenches?
m Modern designs can be highly complex (e.g., hundreds of 1/O pins)
m Manually generating and applying stimuli infeasible / impossible
m The per-transistor cost of testing is higher than that of designing

Motivation

m More powerful testbenches and automation!

m File I/O
m Randomized testing
m Frameworks and packages

covered in other courses

Access Types

HWMod
WS25

m Recall access and file types

Access Types

HWMod
WS25

m Recall access and file types
m Objects can be created dynamically during simulation
Access Typos m Using so-called allocators

Access Types

HWMod
WS25

m Recall access and file types
m Objects can be created dynamically during simulation

Accoss Typos m Using so-called allocators
m No identifier referring to them

Access Types

HWMod
WS25

m Recall access and file types
m Objects can be created dynamically during simulation

Accoss Typos m Using so-called allocators
m No identifier referring to them

m Access types provide access to objects of certain type
type TYPE_NAME is access DESIGNATED_TYPE;

Access Types

HWMod
WS25

m Recall access and file types
m Objects can be created dynamically during simulation

Accoss Typos m Using so-called allocators
m No identifier referring to them

m Access types provide access to objects of certain type
type TYPE_NAME is access DESIGNATED_TYPE;
m Can only be used for variable

Access Types

HWMod
WS25

m Recall access and file types
m Objects can be created dynamically during simulation
Access Types m Using so-called allocators
m No identifier referring to them
m Access types provide access to objects of certain type
type TYPE_NAME is access DESIGNATED_TYPE;

m Can only be used for variable
m Default value nul1; assigned using allocators
int_ptr := new integer;

Access Types

HWMod
WS25

m Recall access and file types
m Objects can be created dynamically during simulation
Access Types m Using so-called allocators
m No identifier referring to them
m Access types provide access to objects of certain type
type TYPE_NAME is access DESIGNATED_TYPE;

m Can only be used for variable

m Default value nul1; assigned using allocators
int_ptr := new integer;

m Access to value of designated type object via a1l

int_ptr.all := 42; print(to_string(int_ptr.all));

Access Types

HWMod
WS25

m Recall access and file types
m Objects can be created dynamically during simulation
Access Types m Using so-called allocators
m No identifier referring to them
m Access types provide access to objects of certain type
type TYPE_NAME is access DESIGNATED_TYPE;

m Can only be used for variable
m Default value nul1; assigned using allocators
int_ptr := new integer;
m Access to value of designated type object via a1l
int_ptr.all := 42; print(to_string(int_ptr.all));

m Similar to object references in Java and the new operator

File Types

HWMod
WS25
m File types define objects representing files on the host system
File Types type FILETYPE is file of TYPE_MARK;

File Types

HWMod
WS25

m File types define objects representing files on the host system
File Types type FILETYPE is file of TYPE_MARK;

m Value of file type object is sequence of values in file

File Types

HWMod
WS25

m File types define objects representing files on the host system
File Types type FILETYPE is file of TYPE_MARK;

m Value of file type object is sequence of values in file
B TYPE_MARK

m Defines types of values in file
m (unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

File Types

HWMod
WS25

m File types define objects representing files on the host system
File Types type FILETYPE is file of TYPE_MARK;

m Value of file type object is sequence of values in file
B TYPE_MARK

m Defines types of values in file
m (unconstrained) scalar types, 1D-array of constrained subtype, fully
constrained record type

m Implicitly defined subprograms for each file type £t of tm

File Operations

HWMod
WS25

procedure file_open (

1
2 status: out file open_status;
3 file f: ft;
4 external name: in string;

File Types 5 open_kind: in file open_kind := READ_MODE) ;
6
7 procedure file_close (file f: ft);
8
9 procedure read (file f: ft; wvalue: out tm);
10
11 procedure write (file f: ft; wvalue: in tm);
12
13 procedure flush (file f: ft);
14

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25
procedure file_open (
status: out file_open_status;
file £: ft;
external name: in string;
open_kind: in file_open_kind := READ_MODE) ;

File Types

procedure file_close (file f: ft);

0 N O A WD =

opens file on host

9 procedure read (file f: ft; wvalue: out tm);
11 procedure write (file f: ft; wvalue: in tm);
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25
procedure file_open (
status: out file_open_status;
file f: ft;
external name: in string;
open_kind: in file open_kind := READ_MODE) ;

File Types

procedure file_close (file f: ft);

0 N O A WD =

indicates result, optional

9 procedure read (file f: ft; wvalue: out tm);
11 procedure write (file f: ft; wvalue: in tm);
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25
procedure file_open (
status: out file_ open_status;
file £: ft;
external name: in string;
open_kind: in file open_kind := READ_MODE) ;

File Types

procedure file_close (file f: ft);

0 N O A WD =

associated to open file

9 procedure read (file f: ft; wvalue: out tm);
11 procedure write (file f: ft; wvalue: in tm);
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25
procedure file_open (
status: out file open_status;
file f: ft;
external name: in string;
open_kind: in file open_kind := READ_MODE) ;

File Types

procedure file_close (file f: ft);

0 N O A WD =

name of the host file

9 procedure read (file f: ft; wvalue: out tm);
11 procedure write (file f: ft; wvalue: in tm);
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25

procedure file_open (

1
2 status: out file open_status;
3 file f: ft;
4 external name: in string;
File Types 5 open_kind: in file_open_kind := READ_MODE) ;
6
7 procedure file_close (file f: ft);
8 READ_MODE, WRITE_MODE
9 procedure read (file f: ft; value: out tm); APPEND_MODE
10 2019: READ_WRITE_MODE

11 procedure write (file f: ft; wvalue: in tm);
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25
procedure file_open (
status: out file open_status;
file f: ft;
external name: in string;
open_kind: in file open_kind := READ_MODE) ;

File Types

procedure file_close (file f: ft);

0 N O A WD =

closes opened file

9 procedure read (file f: ft; wvalue: out tm);
11 procedure write (file f: ft; wvalue: in tm);
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25
procedure file_open (
status: out file open_status;
file f: ft;
external name: in string;
open_kind: in file open_kind := READ_MODE) ;

File Types

procedure file_close (file f: ft);

0 N O A WD =

9 procedure read (file f: ft; wvalue: out tm);

11 procedure write (file f: ft; wvalue: in tm); Always close opened files
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

closes opened file
4

File Operations

HWMod
WS25
procedure file_open (
status: out file open_status;
file f: ft;
external name: in string;
open_kind: in file open_kind := READ_MODE) ;

File Types

procedure file_close (file f: ft);

0 N O A WD =

reads next value

9 procedure read (file f: ft; wvalue: out tm);
11 procedure write (file f: ft; wvalue: in tm);
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25
procedure file_open (
status: out file open_status;
file f: ft;
external name: in string;
open_kind: in file open_kind := READ_MODE) ;

File Types

procedure file_close (file f: ft);

0 N O A WD =

appends value

9 procedure read (file f: ft; wvalue: out tm);
11 procedure write (file f: ft; wvalue: in tm);
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25

procedure file_open (

1
2 status: out file open_status;
3 file f: ft;
4 external name: in string;

File Types 5 open_kind: in file open_kind := READ_MODE) ;
6
7 procedure file_close (file f: ft);
8 ensures buffered writes
9 procedure read (file f: ft; value: out tm); are actually carried out
10

11 procedure write (file f: ft; wvalue: in tm);
13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

File Operations

HWMod
WS25
procedure file_open (
status: out file open_status;
file f: ft;
external name: in string;
open_kind: in file open_kind := READ_MODE) ;

File Types

procedure file_close (file f: ft);

returns true if read
9 procedure read (file f: ft; value: out tm); can read another value

11 procedure write (file f: ft; wvalue: in tm);

0 N O A WD =

13 procedure flush (file f: ft);

15 function endfile (file f: ft) return boolean;

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files

TextlO

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=

type line is access string;

type text is file of string;

TextlO

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=

type line is access string; —- dynamically resizable buffer

type text is file of string;

TextlO

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=

type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type

TextlO

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=

type line is access string; -- dynamically resizable buffer

type text is file of string; —- text-file type

TextlO

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=
type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type
TextlO

m Subprograms for formatted manipulation of 1ine buffers

procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;
justified: in side:=right; field: in width:=0);

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=
type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type
TextlO

m Subprograms for formatted manipulation of 1ine buffers

procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;
justified: in side:=right; field: in width:=0);

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=
type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type
TextlO

m Subprograms for formatted manipulation of 1ine buffers

procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;
justified: in side:=right; field: in width:=0);

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=
type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type
TextlO

m Subprograms for formatted manipulation of 1ine buffers

procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;
justified: in side:=right; field: in width:=0);

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=
type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type
TextlO

m Subprograms for formatted manipulation of 1ine buffers

procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;
justified: in side:=right; field: in width:=0);

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=
type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type
TextlO

m Subprograms for formatted manipulation of 1ine buffers

procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;
justified: in side:=right; field: in width:=0);

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=
type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type
TextlO

m Subprograms for formatted manipulation of 1ine buffers

procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;
Justified: in side:=right; field: in width:=0);

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=
type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type
TextlO

m Subprograms for formatted manipulation of 1ine buffers

procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;
justified: in side:=right; field: in width:=0);

m Subprograms for reading/writing 1ine buffers to file

procedure readline(file f: text; 1l: inout line);
procedure writeline (file f: text; 1: inout line);

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Text 10 Package

HWMod
WS25

m Types and subprograms for formatted operations on text files
m Revolves around two new types &=
type line is access string; —- dynamically resizable buffer

type text is file of string; —-- text-file type
TextlO

m Subprograms for formatted manipulation of 1ine buffers

procedure read(l: inout line; value: out <type>; good: out boolean);
procedure write(l: inout line; value: in <type>;
justified: in side:=right; field: in width:=0);
m Subprograms for reading/writing 1ine buffers to file

procedure readline(file f: text; 1l: inout line);
procedure writeline (file f: text; 1: inout line);

m Further procedures [BINARY |OCTAL |HEX]_[READ |WRITE] for multiple
types (e.g., bit_vector, std_[u]logic[_vector], [un]signed)

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/textio.vhdl

Read from file

HWMod
WS25
1[..]

2 use std.textio.all;

3 [...]

4 begin

5 main: process is

6 file f : text open READ_MODE is "data.txt"; 100
. 7 variable 1 : line; 2 11

8 variable x : std_ulogic_vector (7 downto 0); 3 AA

9 begin

10 while not endfile(f) loop

11 readline(f, 1);

12 hex_read(1l, x);

13 report to_string(x);

14 end loop;

15 file_close(f);

16 wait;

17 end process;

Read from file

HWMod
WS25
1Tl..]

2 use std.textio.all;

3 [...]

4 begin

5 main: process is

6 file f : text open READ_MODE is "data.txt"; 100
. 7 variable 1 : line; 2 11

8 variable x : std_ulogic_vector (7 downto 0); 3 AA

9 begin

10 while not endfile(f) loop

11 readline(f, 1);

12 hex_read(1l, x);

13 report to_string(x);

14 end loop;

15 file_close(f);

16 wait;

17 end process;

HWMod
WS25

Examples

Read from file

1

[...1]

2 use std.textio.all;

3 [...]

4 begin

5 main: process is

6 file £ : text open READ_MODE is "data.txt";
7 variable 1 : line;

8 variable x : std_ulogic_vector (7 downto 0);
9 begin

10 while not endfile(f) loop

11 readline(f, 1);

12 hex_read(l, x);

13 report to_string(x);

14 end loop;

15 file_close(f);

16 wait;

17 end process;

1 00
2 11
3 AA

HWMod
WS25

Examples

Read from file

1

[...1]

2 use std.textio.all;

3 [...]

4 begin

5 main: process is

6 file f : text open READ_MODE is "data.txt";
7 variable 1 : line;

8 variable x : std_ulogic_vector (7 downto 0);
9 begin

10 while not endfile(f) loop

11 readline(f, 1);

12 hex_read(l, x);

13 report to_string(x);

14 end loop;

15 file_close(f);

16 wait;

end process;

1 00
2 11
3 AA

HWMod
WS25

Examples

Read from file

1

[...1]

2 use std.textio.all;

3 [...]

4 begin

5 main: process is

6 file f : text open READ_MODE is "data.txt";
7 variable 1 : line;

8 variable x : std_ulogic_vector (7 downto 0);
9 begin

10 while not endfile (f) loop

11 readline (f, 1);

12 hex_read(l, x);

13 report to_string(x);

14 end loop;

15 file_close(f);

16 wait;

17 end process;

1 00
2 11
3 AA

Read from file

HWMod
WS25
1[..]

2 use std.textio.all;

3 [...]

4 begin

5 main: process is

6 file f : text open READ_MODE is "data.txt"; 100
. 7 variable 1 : line; 2 11

8 variable x : std_ulogic_vector (7 downto 0); 3 AA

9 begin

10 while not endfile(f) loop

11 readline(f, 1);

12 hex_read(1l, x);

13 report to_string(x);

14 end loop;

15 file_close(f);

16 wait;

17 end process;

Read from file

HWMod
WS25
1[..]

2 use std.textio.all;

3 [...]
4 begin
5 main: process is
6 file f : text open READ_MODE is "data.txt"; 1 00
Bams 7 variable 1 : line; 2 11
8 variable x : std_ulogic_vector (7 downto 0); 3 AA
9 begin
:(1) Wh;ijdﬁiee(rfldfi)l?(f) toop [...]: 00000000
12 hex read(l, x)l~ [...]: 00010001
o Strir [...]: 10101010
13 report to_string(x);
14 end loop;
15 file_close(f);
16 wait;

17 end process;

Example: VHDLDraw show

HWMod 1 procedure show(filename : string) is

WS25 2 file f_img : text;
3 variable img_line : line;
4 [...] —— variables for color (r,g,b), width and height
5 begin
6 file_open(f_img, filename, WRITE_MODE) ;
7 swrite(img_line, "P3"); - '"string write", c.f. standard
8 writeline(f_img, img_line);

Examples 9 [...] —— further writes for the image header

10 for y in 0 to height-1 loop
11 for x in 0 to width-1 loop
12 c := frame(y, x);
13 [...] —— set color variables r, g, b
14 if /= 0 then
15 swrite(img_line, " ");
16 end if;
17 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
18 end loop;
19 writeline (f_img, img_line);
20 end loop;
21 file _close(f_img);

22 end procedure; 7

HWMod
WS25

Examples

Example: VHDLDraw show

1 procedure show(filename : string) is

2 file f_img : text;

3 variable img_line : line;

4 [...] —— variables for color (r,g,b), width and height
5 begin

6 file_open(f_img, filename, WRITE_MODE) ;

7
8

swrite(img_line, "P3"); -- "string write", c.f. standard
writeline(f_img, img_line);

9 [...] —— further writes for the image header

10 for y in 0 to height-1 loop

11 for x in 0 to width-1 loop

12 c := frame(y, x);

13 [...] —— set color variables r, g, b

14 if /= 0 then

15 swrite(img_line, " ");

16 end if;

17 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));

18 end loop;

19 writeline (f_img, img_line);

20 end loop;

21 file_close(f_img);

22 end procedure;

Example: VHDLDraw show

HWMod 1 procedure show(filename : string) is

WS25 2 file f_img : text;
3 variable img_line : line;
4 [...] —— variables for color (r,g,b), width and height
5 begin
6 file_open(f_img, filename, WRITE_MODE) ;
7 swrite(img_line, "P3"); - '"string write", c.f. standard
8 writeline(f_img, img_line);

Examples 9 [...] —— further writes for the image header

10 for y in 0 to height-1 loop
11 for x in 0 to width-1 loop
12 c := frame(y, x);
13 [...] —— set color variables r, g, b
14 if /= 0 then
15 swrite(img_line, " ");
16 end if;
17 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
18 end loop;
19 writeline (f_img, img_line);
20 end loop;
21 file _close(f_img);

22 end procedure; 7

Example: VHDLDraw show

HWMod 1 procedure show(filename : string) is

WS25 2 file f_img : text;
3 variable img_line : line;
4 [...] —— variables for color (r,g,b), width and height
5 begin
6 file_open(f_img, filename, WRITE_MODE) ;
7 swrite(img_line, "P3"); —— '"string write", c.f. standard
8 writeline (f_img, img_line);

Examples 9 [...] —— further writes for the image header

10 for y in 0 to height-1 loop
11 for x in 0 to width-1 loop
12 c := frame(y, x);
13 [...] —— set color variables r, g, b
14 if /= 0 then
15 swrite(img_line, " ");
16 end if;
17 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
18 end loop;
19 writeline (f_img, img_line);
20 end loop;
21 file_close(f_img);

22 end procedure; 7

HWMod
WS25

Examples

Example: VHDLDraw show

1 procedure show(filename : string) is

2 file f_img : text;

3 variable img_line : line;

4 [...] —— variables for color (r,g,b), width and height
5 begin

6 file_open(f_img, filename, WRITE_MODE) ;

7
8

swrite(img_line, "P3"); -- "string write", c.f. standard
writeline(f_img, img_line);

9 [...] —— further writes for the image header

10 for y in 0 to height-1 loop

11 for x in 0 to width-1 loop

12 c := frame(y, x);

13 [...] —— set color variables r, g, b

14 if /= 0 then

15 swrite(img_line, " ");

16 end if;

17 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));

18 end loop;

19 writeline (f_img, img_line);

20 end loop;

21 file_close(f_img);

22 end procedure;

Example: VHDLDraw show

HWMod 1 procedure show(filename : string) is

WS25 2 file f_img : text;
3 variable img_line : line;
4 [...] —— variables for color (r,g,b), width and height
5 begin
6 file_open(f_img, filename, WRITE_MODE) ;
7 swrite(img_line, "P3"); - '"string write", c.f. standard
8 writeline(f_img, img_line);

Examples 9 [...] —— further writes for the image header

10 for y in 0 to height-1 loop
11 for x in 0 to width-1 loop
12 c := frame(y, x);
13 [...] —— set color variables r, g, b
14 if /= 0 then
15 swrite(img_line, " ");
16 end if;
17 swrite(img_line, to_string(r)&" "&to_string(g)&" "&to_string(b));
18 end loop;
19 writeline (f_img, img_line);
20 end loop;
21 file _close(f_img);

22 end procedure; 7

Random Testing - Introduction

HWMod
WS25

Random Testing - Introduction

e m Exhaustive testing infeasible (exponential in state and input space)

Random Testing

Test Space

Bug

Exhaustive

Random Testing - Introduction

e m Exhaustive testing infeasible (exponential in state and input space)

m Directed Testing

m Apply predefined stimuli
m Requires solid knowledge of UUT
m Only finds “anticipated” bugs

Random Testing

Test Space @) Oo

@
Bug ¢ 9

Exhaustive Directed

Random Testing - Introduction

e m Exhaustive testing infeasible (exponential in state and input space)

m Directed Testing
m Apply predefined stimuli
m Requires solid knowledge of UUT
m Only finds “anticipated” bugs
m Complementary technique: Random testing

m Apply random stimuli to UUT
m Finds non-anticipated bugs

Random Testing

Test Space @) Oo

@
Bug ¢ 9

Exhaustive Directed Random

Random Testing - Introduction

e m Exhaustive testing infeasible (exponential in state and input space)

m Directed Testing
m Apply predefined stimuli
m Requires solid knowledge of UUT
m Only finds “anticipated” bugs
m Complementary technique: Random testing

m Apply random stimuli to UUT
m Finds non-anticipated bugs
m Usually constrained

Test Space @) OO "*‘
@

Exhaustive Directed Constrained random

Random Testing

Random Testing in VHDL

HWMod
WS25

B uniform procedure of math_real package &=

1 procedure uniform(variable seedl, seed2: inout positive;
2

variable x : out real);

m Generates real in0.0 <x < 1.0

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl

Random Testing in VHDL

HWMod
WS25

B uniform procedure of math_real package &=

1 procedure uniform(variable seedl, seed2:

inout positive;
2

variable x : out real);
m Generates real1 in0.0<x< 1.0

m Seeds allow repetition of generated sequence

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl

Random Testing in VHDL

HWMod
WS25

m uniform procedure of math_real package ==

1 procedure uniform(variable seedl, seed2: inout positive;
2 variable x : out real);

m Generates real1 in0.0<x< 1.0
m Seeds allow repetition of generated sequence
m Seed values modified by the procedure!

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl

Random Testing in VHDL

HWMod
WS25

m uniform procedure of math_real package ==

Random Testing

1 procedure uniform(variable seedl, seed2: inout positive;
2 variable x : out real);

m Generates real in0.0 <x < 1.0

m Seeds allow repetition of generated sequence

m Seed values modified by the procedure!

m Manual conversion to other types / ranges required

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/math_real.vhdl

Random Testing in VHDL (cont’d)

s m Generation of random std_ulogic value
1 impure function rand_sul return std_ulogic is
2 variable rand : real;
3 begin

Random Testing

Random Testing in VHDL (cont’d)

s m Generation of random std_ulogic value
1 impure function rand_sul return std_ulogic is
2 variable rand : real;
3 begin
4 uniform(seedl, seed2, rand);

Random Testing

Random Testing in VHDL (cont’d)

s m Generation of random std_ulogic value

1 impure function rand_sul return std_ulogic is
2 variable rand : real;
3 begin
4 uniform(seedl, seed2, rand);
Random festing 5 if rand < 0.5 then
6 return '0’;
7 end if;
8 return ’'1’;
9 end function;

Random Testing in VHDL (cont’d)

RHA m Generation of random std_ulogic value

1 impure function rand_sul return std_ulogic is
2 variable rand : real;
3 begin
4 uniform(seedl, seed2, rand);
Random festing 5 if rand < 0.5 then
6 return '0’;
7 end if;
8 return ’'1’;
9 end function;

m Generation of integer range

1 impure function rand_int (start, stop : integer) return integer is

Random Testing in VHDL (cont’d)

s m Generation of random std_ulogic value

1 impure function rand_sul return std_ulogic is
2 variable rand : real;
3 begin
4 uniform(seedl, seed2, rand);
Random festing 5 if rand < 0.5 then
6 return '0’;
7 end if;
8 return ’'1’;
9 end function;

m Generation of integer range

1 impure function rand_int (start, stop : integer) return integer is
2 variable rand : real;

3 begin

4 uniform(seedl, seed2, rand);

Random Testing in VHDL (cont’d)

s m Generation of random std_ulogic value

1 impure function rand_sul return std_ulogic is
2 variable rand : real;
3 begin
4 uniform(seedl, seed2, rand);
Random festing 5 if rand < 0.5 then
6 return '0’;
7 end if;
8 return ’'1’;
9 end function;

m Generation of integer range

1 impure function rand_int (start, stop : integer) return integer is
2 variable rand : real;

3 begin

4 uniform(seedl, seed2, rand);

5 return integer (rand * real (stop-start+l)+real (start)-0.5);

6 end function;

Random Testing in VHDL (cont’d)

s m Generation of random std_ulogic value

1 impure function rand_sul return std_ulogic is
2 variable rand : real;
3 begin
4 uniform(seedl, seed2, rand);
Random festing 5 if rand < 0.5 then
6 return '0’;
7 end if;
8 return ’'1’;
9 end function;

m Generation of integer range

1 impure function rand_int (start, stop : integer) return integer is
2 variable rand : real;

3 begin

4 uniform(seedl, seed2, rand);

5 return integer (rand * real (stop-start+l)+real (start)-0.5);

6 end function;

Random Testing in VHDL (cont’d)

s m Generation of random std_ulogic value

1 impure function rand_sul return std_ulogic is
2 variable rand : real;
3 begin
4 uniform(seedl, seed2, rand);
Random festing 5 if rand < 0.5 then
6 return '0’;
7 end if;
8 return ’'1’;
9 end function;

m Generation of integer range

1 impure function rand_int (start, stop : integer) return integer is
2 variable rand : real;

3 begin

4 uniform(seedl, seed2, rand);

5 return integer (rand * real (stop-start+l)+real (start)-0.5);

6 end function;

Standard Environment Package

HWMod
WS25

m VHDL-2008 defines env for interfacing between VHDL and host

Standard Environment Package

HWMod
WS25

m VHDL-2008 defines env for interfacing between VHDL and host

®m stop and finish procedures for simulation termination
ey procedure stop;

Standard Environment Package

HWMod
WS25

m VHDL-2008 defines env for interfacing between VHDL and host

®m stop and finish procedures for simulation termination
ey procedure stop;

m Can be used in main process to stop whole simulation

1 std.env.stop; 1 use std.env.all;
2 [...]
3 stop;

Standard Environment Package

HWMod
WS25

m VHDL-2008 defines env for interfacing between VHDL and host

®m stop and finish procedures for simulation termination
ey procedure stop;

m Can be used in main process to stop whole simulation

1 std.env.stop; 1 use std.env.all;
2 [...]
3 stop;

m Further functionality only introduced in VHDL-2019

Standard Environment Package

HWMod
WS25

m VHDL-2008 defines env for interfacing between VHDL and host

®m stop and finish procedures for simulation termination
ey procedure stop;

m Can be used in main process to stop whole simulation

1 std.env.stop; 1 use std.env.all;
2 [...]
3 stop;

m Further functionality only introduced in VHDL-2019
m Types and functions for getting and formatting real-world timestamps

Standard Environment Package

HWMod
WS25

m VHDL-2008 defines env for interfacing between VHDL and host

®m stop and finish procedures for simulation termination
ey procedure stop;

m Can be used in main process to stop whole simulation

1 std.env.stop; 1 use std.env.all;
2 [...]
3 stop;

m Further functionality only introduced in VHDL-2019

m Types and functions for getting and formatting real-world timestamps
m File system manipulations (e.g., create and delete directories)

Standard Environment Package

HWMod
WS25

m VHDL-2008 defines env for interfacing between VHDL and host

®m stop and finish procedures for simulation termination
ey procedure stop;

m Can be used in main process to stop whole simulation

1 std.env.stop; 1 use std.env.all;
2 [...]
3 stop;

m Further functionality only introduced in VHDL-2019
m Types and functions for getting and formatting real-world timestamps
m File system manipulations (e.g., create and delete directories)
m Simulation meta info (VHDL and tool version, tool name, name of file, etc.)

HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)

	Advanced Testbenches
	Motivation
	File I/O
	Random Testing
	std.env

